Burning up satellites in the lab VKI's contribution to the clean space initiative in the world-largest inductive plasma wind-tunnel

Certain orbits may become inaccessible if we do not act NOW

If we want to sustain outer space activities we cannot continue with business as usual

New regulations (2023) ESA's Zero Debris approach LEO disposal phase $25 \rightarrow 5$ years Probability of successful disposal must be >90%

If we want to sustain outer space activities we cannot continue with business as usual

New regulations (2023)

ESA's Zero Debris approach

LEO disposal phase $25 \rightarrow 5$ years

Probability of successful disposal must be >90%

Design for Demise

 \rightarrow HOW?

Courtesy: NASA/JPL

Design for Demise (D4D): From survival to destruction De-obitation, decay, and burn-up

Since the start of space flight: Survive the reentry at maximum heat flux

Design for Demise: Destroy at minimum heat flux (tumbling)

Design for Demise (D4D): From survival to destruction De-obitation, decay, and burn-up

Courtesy: Fagnani (2023)

Design for Demise: **Destroy at minimum** heat flux (tumbling)

Design for Demise (D4D): De-obitation, decay, and **burn-up gone wrong**

Design for Demise (D4D): De-obitation, decay, and burn-up gone wrong

propellant tank of a Delta 2 rocket (1997) credit: NASA

Delta-V rocket COPV

Ariane V rocket piece https://www.reddit.com/r/space/comments/17pnk2 /a_massive_chunk_of_the_ariane_v_space_rocket/

Delta 2 rocket titanium sphere (1990)

nice collection: https://eclipsetours.com/paul-maley/space-debris/

COPV of the AVUM upper stage (2016)

Source: Rolf Arvidsson

Design for Demise (D4D): Common tools for engineering prediction

Physicochemical models

verification

Experimental data

Computational methods

Design for Demise (D4D): Common tools for engineering prediction

Physicochemical models

verification

Experimental data

Computational methods

From high-fidelity tools to engineering correlations along the trajectory AVUM upper module reentry and fragmentation prediction

von Karman Institute for Fluid Dynamics

Non-profit international educational and scientific organization Experimental and numerical R&D Three departments:

EDUCATION

Training in Research through Active Research

Aeronautics and Aerospace Environmental and applied fluid dynamics Turbomachinery & propulsion Staff, Post-Doc, PhD, bachelor/master thesis, internship

Aeronautics and Aerospace Department Research expertise groups at VKI

TPS characterization Space debris demise Multi-physics modelling Non-equilibrium flows Uncertainty Quantification

Rarefied and Plasma flows

Research Group: Aerothermochemistry

What are we interested in?

Material response

temperatures melting, vaporisation recession rate micro-degradation

Gas phase

- boundary layer temperatures
- gas composition
- surface reaction products
- boundary layer size

stagnation point: reactive surface (ablation)

reactive boundary layer

1.2 MW Inductively Coupled Plasmatron Subsonic plasma flow to recreate a high temperature, reactive boundary layer

1.2 MW Inductively Coupled Plasmatron Plasma-flow test bed to simulate reentry

Gas Power Max. heat flux Pressure

air, N₂, CO₂, Ar 1.2 MW 15 MW/m² 10 hPa - 400 hPa

Which materials can demise? \rightarrow many are problematic (alloys, silicates, CFRPs,...)

von KARMAN INSTITUTE FOR FLUID DYNAMICS

oxidation & freezing

c c c

CFRP

slow delamination

What about our standard satellite building material? Even aluminum silicate "freezes" again after oxidation (in the laboratory...)

To-Do list for a Zero Debris approach In general: Mutual agreement and definition of zero debris charter

More research (experimental & numerical)

- 100 Matrix Dens 1.1e+03 - 800 - 200 0.0e+00

Redesign, especially metallic structures (less thermal mass, more heated surface) \rightarrow Additive Manufacturing

S. Galera, CNES

Adoption by industry!

Academic programs at VKI Your possibilities:

Short-training internship (3-6 months): undergraduate or visiting PhD

Final year and master thesis (3-6 months)

(30-35 students)

Doctoral program (together with European University) (40-60 students)

Post-doctoral program

https://www.vki.ac.be/ bernd.helber@vki.ac.be

- Research Master in Fluid Dynamics (master-after-master, October June)

Visit our booth!

B. Helber (bernd.helber@vki.ac.be) Aeronautics and Aerospace Department von Karman Institute for Fluid Dynamics

VKI ASSETS FOR

