





Switch to Space - 3 October 19, 2022 Philippe Lefèvre

GRIP project: Jean-Louis Thonnard (PI) & Joseph McIntyre (co-PI)

## Science Background

GF and LF are tightly coupled during object manipulation





⇒ The brain predicts the consequences of arm movements

## Science Background

Gravity matters!

Remember:  $GF > \frac{|LF|}{2\mu}$ 



→ In microgravity, a new GF profile must be learned for an adequate force coordination

## Science Background







Load Force (*LF*):  $LF = m \cdot (a + g)$ 

Slip Force (SF):  $SF = \frac{LF}{2\mu}$ 

Grip Force (GF):  $GF > SF \Rightarrow No slip$ 

Safety Margin (SM):

$$SM = \frac{GF - SF}{SF}$$

### Objectives of GRIP

- To challenge the ability of the brain to predict the consequences of motor commands
  - How flexible are the internal models predicting the consequences of voluntary movements?
  - How accurate is the brain in predicting LF variations when a parameter so ubiquitous as gravity is modified?
- To characterize the role of gravity in spatial orientation and sensorimotor optimization
  - How do sensory and cognitive cues interact in defining a reference frame (e.g. "up" and "down") for motor control?
  - How, and how fast, are movement kinematics re-optimized to account for the novel environment dynamics?

## Preliminary ISS Data





## Key role played by Friction



### Coefficient of Friction

#### **GOAL**

To estimate the Slip Force (SF)

=

minimum GF required to avoid slippage,

as a function of LF



Slip Force (SF):



$$SF = \frac{LF}{2\mu}$$

### Four main Tasks



## Preliminary results: Oscillations



#### Oscillations



Rhythmic arm movements allow studying the tight synchrony between GF and LF





What is the influence of mass, frequency and gravity on how GF is modulated as a function of LF?

Is the safety margin more sensitive to one parameter than to others?



### Oscillations

 $LF_{V}[N]$ 





# Preliminary results: Discrete movements



#### Discrete movements

Seated



Credit: NASA

Supine



Two body postures

Two movement axes

Two vision conditions

Seated

Supine



Head-Feet

Front-Back





Eyes open

Eyes closed









### Discrete movements



Gravity: a central plumb-line for spatial orientation?



#### Discrete movements

Hand-position drift in the absence of visual and gravitational cues (N=6)



#### Conclusions

- 1. Brain predictive mechanisms are flexible: adaptation to microgravity is very efficient. Preliminary GRIP data from 6 astronaut subjects are very promising.
- 2. Preliminary ISS data from GRIP show that asymetries between « up » and « down » movements persist even after long exposure to microgravity.
- 3. Preliminary data from GRIP also demonstrate the importance of visual feedback in defining a reference frame for motor control.
- 4. GRIP data confirm the key role played by the coefficient of friction in the interpretation of dexterous manipulation on Earth and in microgravity.

## Thank you!























